Numerical Methodology for Predicting the Nonlinear Elastic Deflection of Curved Beams and Plates Using Nonlinear Integral Equations

نویسندگان

  • Jung Kwan Seo
  • So Young Bae
  • Jeom Kee Paik
  • Taek Soo Jang
چکیده

Ships, ship-shaped offshore structures, land-based structures and aerospace structures typically consist of various curved beam and plate components. An important issue is how to manufacture and construct systems correctly and accurately when their variously shaped curved beams and plates display structural nonlinear behaviour. Multi-point forming is a general process that can be used to form variously shaped curved plates and beams. It has been difficult to apply the integrated systems to thin and/or thick metal plates and beams that have the characteristic of non-linear structural mechanics, such as nonlinear behaviour when loading is applied to the plates. The aim of this study was to derive a simplified numerical calculation based on the formulation of a nonlinear integral equation and a mathematical solution, to predict the nonlinear elastic deflection, load profile and elastic foundation of curved plates or/and beams during the early stages of the advanced manufacturing process of plate and beam formation. The validity of the method is demonstrated through simulations of the proposed numerical approach with experimental results. *Corresponding author: Taek Soo Jang, The Ship and Offshore Research Institute, Pusan National University, Busan, Korea, Tel: +82 51 510-2789 E-mail: [email protected] Received October 17, 2013; Accepted November 20, 2013; Published November 25, 2013 Citation: Seo JK, So Bae Y, Paik JK, Jang TS (2013) Numerical Methodology for Predicting the Nonlinear Elastic Deflection of Curved Beams and Plates Using Nonlinear Integral Equations. J Civil Environ Eng 3: 131. doi:10.4172/2165784X.1000131 Copyright: © 2013 Seo JK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical and Numerical Modelling of the Axisymmetric Bending of Circular Sandwich Plates with the Nonlinear Elastic Core Material

Herein paper compares the analytical model with the FEM based numerical model of the axisymmetric bending of circular sandwich plates. Also, the paper describes equations of the circular symmetrical sandwich plates bending with isotropic face sheets and the nonlinear elastic core material. The method of constructing an analytical solution of nonlinear differential equations has been described. ...

متن کامل

Nonlinear Buckling of Circular Nano Plates on Elastic Foundation

The following article investigates nonlinear symmetric buckling of moderately thick circular Nano plates with an orthotropic property under uniform radial compressive in-plane mechanical load. Taking into account Eringen nonlocal elasticity theory, principle of virtual work, first order shear deformation plate theory (FSDT) and nonlinear Von-Karman strains, the governing equations are obtained ...

متن کامل

Nonlinear Dynamic Response of Functionally Graded Porous Plates on Elastic Foundation Subjected to Thermal and Mechanical Loads

In this paper, the first-order shear deformation theory is used to derive theoretical formulations illustrating the nonlinear dynamic response of functionally graded porous plates under thermal and mechanical loadings supported by Pasternak’s model of the elastic foundation. Two types of porosity including evenly distributed porosities (Porosity-I) and unevenly distributed porosities (Porosity-...

متن کامل

Numerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev ‎approximation

A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...

متن کامل

Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013